Space Travel News  
The Prius Of Space

This image of a xenon ion engine prototype, photographed through a port of the vacuum chamber where it was being tested at NASA's Jet Propulsion Laboratory, shows the faint blue glow of charged atoms being emitted from the engine. A similar engine powers the New Millennium Program's flagship mission, Deep Space 1, which uses the ion engine in a trip through the solar system. The engine, weighing 17.6 pounds (8 kilograms), is 15.7 inches (40 centimeters) in diameter and 15.7 inches long. The actual thrust comes from accelerating and expelling positively charged xenon atoms, or ions. While the ions are fired in great numbers out the thruster at more than 110,000 kilometers (68,000 miles) per hour, their mass is so low that the engine produces a gentle thrust of only 90 millinewtons (20-thousandths of a pound).
by Staff Writers
Pasadena CA (JPL) Sep 14, 2007
If you drive a car - and you know who you are - you have invariably come upon the dreaded dilemma of refueling. When the needle on your gas gauge wavers over the unseemly 'E,' you have to ask yourself one question - Do I stop at the next gas station or press on, hoping for a fuel oasis somewhere down the road? But what if you need to motor somewhere three billion-plus miles off the beaten path - somewhere where neither regular nor premium unleaded have so far feared to tread?

Such is the case for NASA's latest deep space explorer, Dawn. The 2,600 pound spacecraft's mission is to reconnoiter the asteroid belt's two biggest occupants - the massive asteroid Vesta and the even more massive dwarf planet Ceres. To do so, Dawn will not just scream past its prey snapping off a flurry of images as it zooms by. No, not this spacecraft.

"Dawn will be history's first mission to go out into the solar system, orbit and explore a distant body, and then go on to a totally different celestial body and explore that one," said Dawn project manager Keyur Patel of NASA's Jet Propulsion Laboratory, Pasadena, Calif. "To do all that you need a spacecraft with a lot under the hood."

What Patel considers a lot under the hood is definitely not the exo-atmospheric equivalent of a muscle car's 426 Hemi engine. After all, it is about a different type of performance up there - the kind where smooth, reliable operation and gas mileage count more than the capability to burn rubber. What it takes up there is a deep-space qualified engine, a whole bunch of juice and the same kind of gas used in photographic flash bulbs and some car headlights.

The engine is called NASA Solar Electric Propulsion Technology Applications Readiness. Most people in the deep space exploration business just refer to it as "ion propulsion." The juice is, of course, electricity, courtesy of 54 feet of electricity-producing solar array. The gas is xenon, an inert, colorless gas that is four times heavier than air and is the propellant of choice for asteroid explorers everywhere.

"Each of our three ion engines weighs in at 20 pounds and is about the size of a basketball," said Patel. "From such a little engine you can get this blue beam of rocket exhaust that shoots out at 89,000 miles per hour. The fuel efficiency of an ion engine is an order of a magnitude higher than chemical rockets and can reduce the mass of fuel onboard a spacecraft up to 90 percent. It is a remarkable system."

Praise like that does raise an important question. If ion engines are so hyper-efficient, how come NASA does not use them for all their rockets and spacecraft?

"For the same reason a drag racer would not use a fuel efficient Prius to compete in the quarter mile," said John Brophy, Dawn's ion propulsion systems manager. "Not enough get up and go."

The kind of get up and go Brophy is talking about is power - horsepower to hurtle a top fuel dragster down the track, or the massive amounts of thrust to give a rocket enough get up and go to go - out there.

"We have a powerful rocket to cover those initial 175 miles," added Brophy. "Our Delta II Heavy will give the Dawn spacecraft enough energy to leave Earth's atmosphere and its gravitational sphere of influence. But getting into space is just the beginning. There will still be a lot of motoring ahead."

A lot of motoring is right. Over the course of its eight year mission, first to Vesta and then off to Ceres, Dawn's three ion engines will accumulate 2,000 days of operation - that is 5.5 years of happy motoring!

Why so much engine time? It is as simple as a plain piece of paper.

"Hold a piece of notebook paper in your hand. The weight of that paper pushing against your hand is the same as the thrust provided by one of Dawn's ion engines -- at full throttle I might add," said Brophy. "If you had an ion engine firing here on Earth, it would not be able to push a skateboard across a sidewalk!"

Lucky for Dawn there are no sidewalks in space - and as far as we know no skateboards. What there is up there is plenty of space, so soon after the spacecraft escapes Earth's gravity, one of its ion engines can kick in and begin the long, efficient chase of its first asteroid belt target, Vesta.

At first glance, Dawn's full throttle, pedal-to-the-metal, performance is a not-so-inspiring 0-to-60 mph in 4 days. But consider this - because of its incredible efficiency, it expends only 40 ounces of xenon propellant during that time. And then take into consideration that after those four days of full-throttle thrusting, it will do another four days - and then another four. By the end of 12 days the spacecraft will have increased its velocity by over 180 miles per hour, with more days and weeks and months of continuous thrusting to come. After a year Dawn's ion propulsion system will have increased the spacecraft's speed by 5,500 mph while consuming the equivalent of only 15 gallons of fuel. By the end of its mission Dawn will have accumulated more than 5 years of total thrust time, giving it an effective change in speed of about 23,000 mph.

"In the end it is about the science," added Patel. "What we find when Dawn gets to Vesta and Ceres will re-write the history books on the beginning of our solar system. But how we get there is almost as remarkable, 1.8 billion miles to Vesta, months flying around it performing science adjusting our orbits as we go. Then we travel another billion miles to Ceres where we do it all over again. That is a lot to ask of a beam of blue light."

Those space aficionados who want to keep their "ion" the mission should note the launch period for Dawn's voyage to Vesta and Ceres opens September 26 from Cape Canaveral Air Force Station's Pad 17-B.

Related Links
Anatomy of an Ion Engine
Dawn home page
Rocket Science News at Space-Travel.Com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Northrop Grumman KEI Team Completes Fourth Rocket Motor Test
Promontory UT (SPX) Sep 13, 2007
On the heels of a successful Stage 1 test burn just three months ago, and with its eye on a booster flight test next year, the Kinetic Energy Interceptors (KEI) program team fired another powerful Stage 1 rocket motor yesterday, its fourth consecutive test in the past 18 months. Under contract to the Missile Defense Agency (MDA), Northrop Grumman Corporation (NYSE:NOC) is the KEI prime contractor, with Raytheon Company as the principal subcontractor.







  • The Prius Of Space
  • Northrop Grumman KEI Team Completes Fourth Rocket Motor Test
  • Chinese Astronauts Test Traditional Chinese Medicines In Space
  • Ball Aerospace Presents Proposal For Ares I Crew Launch Vehicle Instrument Unit Avionics

  • Foton-M3 On Schedule For Launch
  • Arianespace To Launch ELISA Satellites
  • Foton Satellite Launch To Go Ahead Despite Proton Crash
  • Russia To Launch UAE Spacecraft In 2008 From Baikonur

  • STS-120 To Deliver Harmony Node To ISS
  • NASA finds cracks on shuttle tanks
  • US shuttle makes textbook return landing
  • NASA looks to next US shuttle launch

  • Boeing Hardware Installed During Space Shuttle Endeavour Mission
  • Outside View: Obsolete space industry
  • Mastracchio And Williams Install New Station Control Moment Gyroscope (CMG)
  • Punctured astronaut's spacesuit cuts short spacewalk

  • Getting A Taste Of Space
  • Partners Sought For Singapore Space Venture
  • More Teachers Get A Lesson In Weightlessness
  • World Space Expo At Kennedy Space Center Celebrates 50 Years In Space

  • Mission To Moon Not A Race With Others
  • At Least 3 Chinese Satellites Malfunctioning Since 2006
  • China reveals deadly threat to historic space flight
  • China Trains Rescue Teams For Third Manned Space Program

  • Microsoft teams up in Japan to set robotics standards
  • Drive-By-Wire And Human Behavior Systems Key To Virginia Tech Urban Challenge Vehicle
  • Successful Jules Verne Rendezvous Simulation At ATV Control Centre
  • Robotic Einstein Wows Spanish Technology Fair

  • New Theory Explains Ice On Mars
  • Opportunity Begins Sustained Exploration Inside Crater
  • The Mysterious Ridges At The Mouth Of Tiu Valles
  • Opportunity Takes A Dip Into Victoria Crater

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement