. Space Travel News .




.
STATION NEWS
Voyage to Vaccine Discovery Continues with Space Station Salmonella Study
by Jessica Nimon for International Space Station Program Science Office
Houston TX (SPX) Jul 29, 2011

An example of Salmonella invading cultured human cells. (Image courtesy of Rocky Mountain Laboratories, NIAID, NIH)

Any scientist can tell you that research is a time-consuming pursuit. In fact, it can take decades to show results, as the knowledge compounds and inspires additional studies.

This building of information is what led to the Recombinant Attenuated Salmonella Vaccine or RASV investigation, which launched to the International Space Station on July 8, 2011.

The investigation combines decades of expertise between two Arizona State University research teams. One team, led by Cheryl Nickerson, Ph.D. specializes in the use of the spaceflight platform to provide insight into how microbial pathogens cause infection and disease in the human body.

The other team, led by Roy Curtiss III, Ph.D. focuses on the design and clinical testing of next generation vaccines to protect against diseases caused by pathogenic microbes.

In addition, the Arizona State University researchers partnered with Mark Ott, Ph.D., at NASA's Johnson Space Center to strengthen the team's core expertise of space microbiology.

The vaccine samples that were flown on STS-135 are a genetically altered strain of Salmonella that carries a protective antigen against Streptococcus pneumonia - a bacteria that causes life-threatening diseases, such as pneumonia, meningitis, and bacteremia.

This organism is responsible for more than 10 million deaths annually and is particularly dangerous for newborns and the elderly, as they are less responsive to current anti-pneumococcal vaccines.

"We have the opportunity," commented Nickerson, "to utilize spaceflight as a unique research and development platform for novel applications with potential to help fight a globally devastating disease."

Nickerson and Curtiss designed the RASV experiment to use the unique microgravity environment of the space station National Laboratory to increase the vaccine's anti-pneumococcal effectiveness by maximizing its ability to induce a protective immune response.

Already a promising oral vaccine candidate that is in human clinical trials, RASV has many advantages over vaccines delivered by a needle.

This includes activation of an additional arm of the immune system that cannot be engaged by vaccines that are administered as a shot. The Salmonella vaccine strain is genetically modified not to cause disease in humans, but instead carries an antigenic protein from Streptococcus pneumonia. This addition stimulates a protective immune response without actually causing the disease.

According to Nickerson, the initial clinical trials indicated a need for additional enhancement to the vaccine's ability to induce a potent protective immune response.

By sending samples back to the space station for continued microgravity research, scientists hope that they will be able to better genetically engineer the vaccine strain to enhance its immunogenicity, while reducing or eliminating any unwanted side effects.

To accomplish this goal, special growth chambers containing the vaccine strain traveled to the station aboard the shuttle Atlantis, where crew members activated the samples.

Scientists simultaneously are growing a control sample on the ground for comparison under otherwise identical conditions. The spaceflight cultured RASV strain returned to Earth with STS-135 on July 21, 2011.

Researchers will now evaluate the space-flown strain against the control sample for its ability to protect against pneumococcal infection and changes in gene expression. Molecular targets identified from this work hold promise for translation to develop new and improve existing anti-pneumococcal RASVs to prevent disease for the general public.

Moreover, because RASVs can be produced against a wide variety of human pathogens, the outcome of this study could influence the development of vaccines against many other diseases in addition to pneumonia.

Early work that laid the foundation for the microgravity RASV investigation began in 1998 when Nickerson initially was funded by NASA.

This was the first of what would be multiple studies from this team on Salmonella bacteria grown in true microgravity or ground-based analogues of microgravity. The goal was initially to see how the bacteria would respond to a microgravity environment.

The ground study led to 2006's Effect of Spaceflight on Microbial Gene Expression and Virulence or Microbe investigation. The findings for Microbe were surprising, as scientists discovered that Salmonella cultured in the spaceflight environment became more virulent - meaning there was an increase in its disease-causing potential.

This study also showed that spaceflight globally altered Salmonella gene expression in key ways that were not observed during culture on Earth, leading to the identification of a master switch that regulates this response.

The Nickerson team followed Microbe with 2008's Microbial Drug Resistance and Virulence or MDRV investigation. This study both reproduced the increased virulence effect in spaceflight-grown Salmonella and identified a way to turn off the increased virulence.

Collectively, these investigations enabled researchers to devise the RASV flight experiment in an effort to develop a better vaccine against pneumonia.

"The key to this research is the novel way that bacterial cells adapt and respond to culture in the microgravity environment," said Nickerson, "as they exhibit important biological characteristics that are directly relevant to human health and disease that are not observed using traditional experimental approaches."

The current investigation is not the final chapter in this journey towards vaccine development. Thanks to the recent signing of a Space Act Agreement between NASA and the Biodesign Institute at Arizona State University, Nickerson and her team are now users of the space station as a National Laboratory.

Scientists participating in this study plan to fly a continuing series of experiments to the space station. This streamlined access will help to accelerate progress for this lifesaving vaccine.




Related Links
NASA's Johnson Space Center
Station at NASA
Station and More at Roscosmos
S.P. Korolev RSC Energia
Watch NASA TV via Space.TV
Space Station News at Space-Travel.Com

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



STATION NEWS
New uses for Space Station
Paris (ESA) Jul 28, 2011
For more than a decade, the International Space Station has been a busy orbiting research lab. But it could soon take on a new role as a testbed for ambitious missions deeper into space. Future ventures could include Mars missions, lunar habitats or travelling to an asteroid - all needing new technologies and techniques that could be tested on the Station. Following yesterday's meeting of ... read more


STATION NEWS
Inmarsat Selects ILS Proton For Inmarsat-5

United Launch Alliance Saves Money with First Combined Atlas and Delta Shipments on Mariner

Russia sends observation satellite into space

NASA inks agreement with maker of Atlas V rocket

STATION NEWS
NASA's Next Mars Rover to Land at Gale Crater

Opportunity Closing In On Spirit Point At Endeavour Crater

MAVEN Mission Completes Major Milestone

NASA says Mars mountain will read like 'a great novel'

STATION NEWS
Unique volcanic complex discovered on Lunar far side

Moon Express Announces Dr. Alan Stern as Chief Scientist

Northrop Grumman Honored by IEEE for Development of Lunar Module

Two NASA Probes Tackle New Mission: Studying The Moon

STATION NEWS
Hubble telescope spots tiny fourth moon near Pluto

NASA's Hubble Discovers Another Moon Around Pluto

Neptune Completes First Orbit Since Discovery In 1846

Clocking The Spin of Neptune

STATION NEWS
Exoplanet Aurora Makes For An Out-of-this-World Sight

Distant planet aurorae modeled

Exoplanet Aurora: An Out-of-this-World Sight

Ten new distant planets detected

STATION NEWS
Ball Aerospace Develops Flight Computers for Next-Generation Launch Vehicles

New Russian carrier rockets to the Moon

Gantry's First Splash Test Is a Booming Success

NASA Begins Testing of Next-Gen J-2X Rocket Engine

STATION NEWS
Why Tiangong is not a Station Hub

China to launch experimental satellite in coming days

Spotlight Time for Tiangong

China launches new data relay satellite

STATION NEWS
Dawn Views Dark Side of Vesta

Dawn Spacecraft Begins Science Orbits of Vesta

SOHO Watches a Comet Fading Away

'Trojan' asteroid shares Earth's orbit


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement