Subscribe free to our newsletters via your
. Space Travel News .




ROCKET SCIENCE
NASA Tests New Robotic Refueling Technologies
by Staff Writers
Greenbelt MD (SPX) Mar 09, 2014


A robot servicer could use autonomous rendezvous and fluid transfer technologies to extend the life of orbiting satellites (depicted, artist's concept). Image courtesy NASA. Please go here to view a video on the technology.

NASA has successfully concluded a remotely controlled test of new technologies that would empower future space robots to transfer hazardous oxidizer - a type of propellant - into the tanks of satellites in space today.

Concurrently on the ground, NASA is incorporating results from this test and the Robotic Refueling Mission on the International Space Station to prepare for an upcoming ground-based test of a full-sized robotic servicer system that will perform tasks on a mock satellite client.

Collectively, these efforts are part of an ongoing and aggressive technology development campaign to equip robots and humans with the tools and capabilities needed for spacecraft maintenance and repair, the assembly of large space telescopes, and extended human exploration.

Technologies to Help Satellites That Help Earth
The Satellite Servicing Capabilities Office (SSCO) at NASA's Goddard Space Flight Center in Greenbelt, Md., checked another critical milestone off their list with the completion of their Remote Robotic Oxidizer Transfer Test (RROxiTT) in February 2014.

"This is the first time that anyone has tested this type of technology, and we've proven that it works. It's ready for the next step to flight," says Frank Cepollina, veteran leader of the five servicing missions to the Hubble Space Telescope and the associate director of SSCO.

"RROxiTT gives NASA, and the satellite community at large, confidence that advanced satellite refueling and maintenance technologies aren't a wild dream of the future," says Cepollina. "They're being built and tested today - and the capabilities that they can unlock can become a reality."

Since 2009, SSCO has been investigating human and robotic satellite servicing while developing the technologies necessary to bring on-orbit spacecraft inspection, repair, refueling, component replacement and assembly capabilities to space.

Taking lessons learned from the successful Robotic Refueling Mission, the SSCO team devised the ground-based RROxiTT to test how robots can transfer hazardous oxidizer, at flight-like pressures and flow rates, through the propellant valve and into the mock tank of a satellite.

While this capability could be applied to spacecraft in multiple orbits, SSCO focused RROxiTT specifically on technologies that could help satellites traveling the busy space highway of geosynchronous Earth orbit, or GEO.

Located about 22,000 miles above Earth, this orbital path is home to more than 400 satellites, many of which beam communications, television and weather data to customers worldwide.

By developing robotic capabilities to repair and refuel GEO satellites, NASA hopes to add precious years of functional life to satellites and expand options for operators who face unexpected emergencies, tougher economic demands and aging fleets. NASA also hopes that these new technologies will help boost the commercial satellite-servicing industry that is rapidly gaining momentum.

Besides aiding the GEO satellite community, a capability to fix and relocate "ailing" satellites also could help mitigate the growing orbital debris problem that threatens continued space operations, ultimately making space greener and more sustainable.

Goddard and Kennedy Collaborate on New Technologies
RROxiTT tested a suite of new robotic technologies and procedures developed by the SSCO team at two collaborating centers, Goddard and Kennedy Space Center, Fla.

Technologies included a flexible propellant hose, a new Oxidizer Nozzle Tool, and a unique propellant transfer system (PTS) all developed by the multi-Center SSCO team. The PTS, consisting of oxidizer tanks, seal-less pumps, flow-metering devices, and a maze of tubing, contains the components a servicer satellite would need to replenish the propellant of orbiting spacecraft for many years of extended life.

During operations, a robot operator at NASA Goddard in Maryland commanded an industrial robot at Kennedy in Florida -- more than 800 miles away -- to mate to a satellite valve and transfer propellant into a mock tank. At the conclusion of nine days of RROxiTT operations, the SSCO team declared victory.

"It's one thing to build a set of technologies and discover that they work," says Benjamin Reed, deputy project manager of SSCO at Goddard. "It's another thing to consider the capabilities that they could unlock. The paradigm of one-and-done should be relegated to the 20th century - the future of space will be re-use, re-purpose and replenish." Applications to Help People Stay Safer on Earth

While RROxiTT technologies are being designed for use in space, they may one day be applied to robotically replenish satellites before they launch.

Oxidizer - namely nitrogen tetroxide - is a chemical that, when mixed with satellite fuel, causes instant combustion that provides thrust (motion) for a satellite. The liquid is contained within a satellite tank at intense pressures, up to 300 pounds per square inch (about 20 times atmospheric pressure). Toxic, extremely corrosive and compressed, it requires special handling.

Using these new RROxiTT technologies to robotically fill up satellites on the ground would keep humans at a safe distance during these extremely hazardous operations.

Future Satellite Servicing Demonstrations
Since wrapping up RROxiTT, SSCO is broadening its portfolio to include xenon transfer technologies -- propellant used by satellites with electric propulsion systems. The team is also gearing up for the next phase of the Robotic Refueling Mission on the International Space Station. The next Automated Transfer Vehicle, currently scheduled to launch to the space station in June of this year, will deliver new RRM hardware for a fresh set of activities.

Upcoming demonstrations include spacecraft inspection, the replenishment of cryogens in satellites not originally designed for in-flight service, and advanced solar cell technology. A separate space station demonstration currently in development will focus on real-time relative navigation.

On the ground, SSCO will be conducting a separate test at Goddard in later this year. Drawing from lessons learned from RRM, RROxiTT, and their efforts in robot algorithms and development, the team will command a full-sized robot servicer system to perform a series of servicing tasks on a suspended satellite mockup. Results will help the team evaluate how the numerous servicer subsystems and technologies work together as an integrated system to accomplish servicing objectives. The event will test both proven and newly developed technologies.

"Sustainable space development is not only good stewardship of the shared resource of outer space," says Reed, "but it also makes sense as we develop the skill set to embark humans deeper into our solar system."

.


Related Links
Robotic Refueling Mission at NASA
Rocket Science News at Space-Travel.Com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ROCKET SCIENCE
New method for producing clean hydrogen
Durham NC (SPX) May 24, 2013
Duke University engineers have developed a novel method for producing clean hydrogen, which could prove essential to weaning society off of fossil fuels and their environmental implications. While hydrogen is ubiquitous in the environment, producing and collecting molecular hydrogen for transportation and industrial uses is expensive and complicated. Just as importantly, a byproduct of mos ... read more


ROCKET SCIENCE
Payload prep continues for Arianespace Soyuz for Sentinel-1A

Russia to Start Building New Manned Rocket Launch Pad in 2015

New Vostochny space center a key priority for Russian Far East

'Mission of Firsts' Showcased New Range-Safety Technology at NASA Wallops

ROCKET SCIENCE
Robotic Arm Crushes Rock for Study

Relay Radio on Mars-Bound NASA Craft Passes Checkout

Mars Rover Oppportunity Crushing Rocks With Wheels

NASA's Curiosity Mars Rover Views Striated Ground

ROCKET SCIENCE
Control circuit malfunction troubles China's Yutu

China's Lunar Lander Still Operational

China Focus: Uneasy rest begins for China's troubled Yutu rover

Is Yutu Stuck?

ROCKET SCIENCE
New Horizons Reaches the Final 4 AU

Thanks America, New Horizons Ahead

Countdown to Pluto

A Busy Year Begins for New Horizons

ROCKET SCIENCE
What Would A Rocky Exoplanet Look Like? Atmosphere Models Seek Clues

'Dimer molecules' aid study of exoplanet pressure, hunt for life

Super-Earth' may be dead worlds

Kepler Mission Announces a Planet Bonanza, 715 New Worlds

ROCKET SCIENCE
Sierra Nevada Completes Dream Chaser Flight Profile Data Milestone

Japan Calls For New Launcher Proposals

US considers launching production of Russian rocket engines

Orion Stage Adapter Aces Structural Loads Testing

ROCKET SCIENCE
China expects to launch cargo ship into space around 2016

China capable of exploring Mars

Feature: The "masters" behind China's lunar rover Jade Rabbit

Preparation for Chang'e-5 launch on schedule

ROCKET SCIENCE
Asteroid to make close pass by Earth

Silently and patiently streaking through the main asteroid belt

NEOWISE Spies Its First Comet

Astronomers spot rare asteroid break-up




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.